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The formation of carbon-carbon bonds by addition of activated 
carbons to alkenes has been an intensely studied subject for many 
years. One focus of these studies has been on intramolecular 
carbon-carbon bond formation to produce five-membered rings 
through radical,1 cationic,2 and anionic3 cyclization with alkenes. 
In addition, several reports have appeared that describe the in­
tramolecular insertion of a single alkene into early transition 
metal-carbon bonds also known to catalyze olefin polymerization 
(Sc,4 Zr,5 Ti6).7 A reaction involving titanium, the cyclization 
of 3a to 4a, was an elegant mechanistic probe that allowed the 
study of the Ziegler-Natta polymerization process (Scheme I).6 

The general efficiency and selectivity demonstrated by Ziegler-
Natta polymerization catalysts8 initiated our use of the 
Cp2TiCl2/EtAlCl2 catalyst system6'9 as a method for regioselective 
ring formation with unactivated alkenes. 

Our preparation of 3a followed established procedures involving 
formation of 2a followed by reaction with Cp2TiCl2 (Scheme I).6,10 

Grignard complex 2a was added to Cp2TiCl2 in CH2Cl2 at -40 
0C, and after 30 min, the solution was warmed to 23 0C for 2 
h. Quenching (HCl/MeOH) samples of both 2a and 3a generated 
the same 96:4 ratio of 1-hexene to methylcyclopentane; thus, the 
transmetalation process did not result in further ligand cycliza­
tion." The titanium complex was purified by evaporation of 

' Dedicated to the memory of John K. Stille, Distinguished Professor of 
Chemistry (Colorado State University). Deceased July 19, 1989. 
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Scheme I. Lewis Acid Promoted Intramolecular Alkene Insertion 
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Table I. Product Distribution from Intramolecular Insertion of 
Disubstituted Alkenes 
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0 Method for cyclization of 3 (X = TiClCp2): EtAlCl2, toluene, -78 
°C. Method for cyclization of 1 (X = Br): Bu3SnH, AIBN, C6H6, 80 
0C. 'Numbers represent the percentage of each product in the reac­
tion niixlurc. The balance of the product mixture, in each case, was 
the reduced substrate (X = H). Cyclization yield of major product is 
in parentheses (rcf 12). c Seeref l8 . •*Ratio of trans- to cis-fused endo 
cyclization products. 

solvents in vacuo, extraction of the solids with toluene/hexane 
(1:1), and then solvent removal to produce 3a as a red oil. 

Cyclization of 3a to 4a (0.2 M toluene) was induced by the 
addition of 0.50 equiv of EtAlCl2 at - 78 0 C . After 30 min, 
protonolysis of the reaction mixture produced methylcyclopentane, 
the product of exo cyclization, in 88% yield from 3a.12 Cyclo-

(II) Ligand cyclization (2-5%) during Grignard formation and hydrolysis 
has been well documented: Ashby, E. C; Oswald, J. J. Org. Chem. 1988, 53, 
6068, and references therein. 
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hexane, the result of endo cyclization, was not observed. An 
alternate method of ligand removal involved the treatment of the 
reaction mixture with 1.5 equiv of pyridine, to neutralize the 
EtAICl2, followed by addition of 3.0 equiv of /V-bromosuccinimide. 
Formation of (bromomethyl)cyclopentane in 94% yield demon­
strated the efficient functionalization of the organic ligand fol­
lowing ring formation. 

This investigation was extended to the study of vicinally and 
geminally disubstituted alkenes tethered to titanium (Table I). 
In general, these complexes were prepared with less than 1% ligand 
cyclization, and 2 equiv of EtAICl2 with longer reaction times than 
those necessary for 3a was required to obtain >97% ring formation. 
Although cyclization of 3b was 99% complete after 2 h at -78 
0C, 3c had progressed to only 65% cyclization under these con­
ditions and required an additional 2.5 h at 23 0C to reach com­
pletion.13 Insertion of a cyclopentene ring into the Ti-C bond 
proceeded well (3d to 4d), but the tethered cyclohexene substrate 
3e failed to cyclize. In each case, the product ratios obtained for 
activation of substrates 3a-3e were the same as those observed 
for free-radical intermediates generated from la-le. Substrates 
containing geminally disubstituted olefins resulted in selective 
formation of quaternary carbon centers. The methyl-substituted 
substrates 3f and 3i resulted in the formation of geminal di-
methylcyclopentanes following protonolysis,14 while the exo 
methylene ring substrates 3g and 3h selectively produced cis-fused 
ring systems with an angular methyl group.15 

A notable feature of this titanium-mediated cyclization was 
the selective cyclopentane ring formation, especially in the gen­
eration of quaternary centers. These selectivities were similar to 
those produced by anionic cyclization, in which substrates g and 
h (X = Li) produced only exo cyclization products in 80% and 
95% conversion, respectively.16 On the other hand, the significant 
preference for five-membered-ring products under the titani­
um/aluminum Ziegler-Natta conditions was opposite those ob­
served for the relatively nonselective free-radical cyclization of 
substrates f-i.17 The high regioselectivities of these metal-me­
diated cyclizations are due to conformational restrictions on the 
intramolecular syn coplanar addition of the metal-carbon bond 
to the olefin. 
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The Chemistry of Enones. Parts 1 and 2. Book Review. [J. Am. 
Chem. Soc. 1990,112,4095]. SAUL PATAI and Zvi RAPPOPORT 

The indexes are in Part 2, not in Part 1 as stated. 

From Twisted to Folded Ethylenes [J. Am. Chem. Soc. 1988, UO, 
4843-4844]. AGHA ZUL-QARNAIN KHAN and JAN SANDSTROM* 

The compounds formed on addition of the l-thioacyl-2,2-di-
aminoethylenes 4 to DMAD and claimed to be "folded" ethylenes 
with pyramidal carbon atoms (6) have been shown to be instead 
4-uminolhiopyrans 9, formed by ring-opening on workup of the 
initially formed thiopyran-4-spiro-2'-l',3'-diazacyclanes 8.1 

(CHj)n 

8 9 

Compounds 8 were not observed in the initial experiments, since 
they arc transformed to 9 on TLC analysis and chromatographic 
workup. The structures of analogues of 8 have been determined 
by X-ray crystallography.2 
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